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Abstract: In this paper we present two virus propagation and elim-
ination models that take into account the traffic and server character-
istics of the network computers. The first of these models partitions
the network nodes into perimeter and non-perimeter nodes. Incom-
ing/outgoing traffic of the network passes through the perimeter of
the network, where the perimeter is defined as the set of the servers
which are connected directly to the internet. The non-perimeter
network nodes, i.e. the computers with no direct internet connec-
tion, form a kind of isolated internet connected to the outside world
through the perimeter nodes. All network nodes are assumed to
process tasks based on the M/M/1 queuing model. Thus, the model
behaves as an open network of M/M/1 queues. We study burst in-
trusions (e.g. Denial of Service Attacks) at the network perimeter
and how the intrusion evolves given that, in parallel with the intru-
sion, anti-virus tasks also propagate in the network and kill intruder
tasks. We propose a kind of interaction between these agents that
results in a product form steady state distribution of the agent num-
bers for each network node, much like the product form solution
for the distribution of network tasks for Jackson open networks of
queues. In the second model, we apply the same type of interactions
to worms that take advantage of Domain Name Servers (DNS) in
IPv6 networks, using a set of differential equations. We propose as
an interesting research direction the combination of the two mod-
els, where the steady state solution of the first model will provide
suitable initial conditions for the second one.

I. Introduction

A computer virus is an autonomous malicious, self-
propagating piece of code that is able to spread fast in com-
puter networks. Most often, the virus propagates by tak-
ing advantage of insecure network connections, unprotected
shared storage, faulty email protocols, Instant Messengers or
Peer to Peer (P2P) file sharing networks with no properly set
access rights. The Simple Mail Transfer Protocol (SMTP),
for instance, is one of the most common propagation means
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whereby the virus spreads by attaching itself as an email at-
tachment or by embedding itself into html files. After ar-
riving at the target computer, it propagates in the same way
using as targets the e-mail addresses found at the victim’s
email address book.
Efforts towards virus propagation modelling have increased
significantly over the past few years, mainly after a series
of virus outbreaks such as CodeRed [15] worm, Nimda [3]
worm, Slammer worm [11], Sobig [4], W32/Bagle and
W32/Novarg [2], Sober. X, Netsky. P and Mytob. ED [13].
Also, recently, it has been observed that viruses exploit an-
other, social-related, popular communication method such as
Instant Messengers (IM) or Peer-to-Peer (P2P) file sharing
networks [6]. IM networks provide the ability not only to
transfer text messages, but also files supporting peer-to-peer
file sharing, leading to the immediate spread of files that are
infected. Viruses use “social engineering” methods in order
to persuade people to run malicious programs [5]. With IM,
viruses can propagate much faster, since attacking potential
victims does not involve scan operations to unknown or un-
used IP addresses (something that could also lead to capture
of the virus). What is simply needed is an online users’ con-
tact list. Even more, there are some IM viruses that exploit
computer vulnerabilities, such as the ones described in [10],
to allow automatic code execution. Such propagation means
are more dangerous and faster since propagation does not re-
quire user intervention. Moreover, since an ever increasing
number of people use IM services, new viruses appear the
propagate by devising different propagation tactics.
Although a growing number of researchers focus their ef-
forts on devising new techniques for detecting and eliminat-
ing viruses, there seems to be less intense activity towards
the development and evaluation of theoretical models able to
account of how viruses exploit vulnerabilities of computer
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networks and propagate, accordingly. In [14] Wang et al.
propose and analyze a virus propagation model targeted at
clustered and a tree-like layered network architectures. Ac-
cording to this model, viruses produce copies that replicate
in the network at a constant rate without needing user inter-
vention. Zou et al. studied the Code Red worm propagation
behaviour using the classical epidemic Kermack-Mckendrick
model [15]. Newman et al. arrived at an analytical solu-
tion for the percolation threshold for “small world” network
topologies (see [7, 14]). Albert et al. were the first to pro-
pose a model for the vulnerabilities of power law networks
with regard to virus propagation [11]. The authors conclude
that the power law topology is vulnerable under deliberate
attacks. Mannan and van Oorschot [9] review selected IM
viruses and summarize their main characteristics, motivating
a brief overview of the network formed by IM contact lists,
and a discussion of theoretical consequences of viruses in
such networks.
In our work we view the attack propagation/elimination
problem in networks from another perspective that avoids the
use of non-linear evolution dynamics (e.g. non-linear differ-
ential equations of Lotka-Volterra like models – see, for in-
stance, [12]). Instead, we propose and analyze a mathemat-
ical model for the co-evolution of the populations of virus
and antivirus software modules based on a queue theoretical
formulation. We model a computer network as a network
of interconnected service centers (network of queues) with
incoming/outgoing connections to the outside world. Each
such service center is modeled as an M/M/1 queue servicing
the agents that move within the network. These agents are
the virus and antivirus agents that move about in the network
as network customers.The idea behind this model is that an-
tivirus agents are simply users of all network resources and
try to exploit all network servers in order to propagate fur-
ther. Thus, this model provides a link between a network’s
characteristics (e.g. queue policies, service times and server
utilization) with the speed with which virus agents propa-
gate. A further element of this model is the virus-antivirus
agent interaction. The rule we adopt is simple: if an an-
tivirus agent meets a virus agents then it kills the virus agent
and then kills itself (i.e. the two agents annihilate) so as to re-
duce the network load progressively as more and more virus
agents are eliminated. We are interested for the co-evolution
of the populations of virus and antivirus software agents
across the infected network when they follow this mode of
interaction. We show that the distribution of the numbers of
virus/antivirus in the network nodes can be written in a prod-
uct form much like the solution of the open Jackson networks
of M/M/1 queues. We then propose another model, that has
queueing characteristics, for modeling virus agents that take
into account the operation of Domain Name Servers (DNS)
in IPv6 networks. We believe that the two models can be
combined and provide a more accurate virus/antivures agent
propagation and elimination model.

II. The intrusion propagation/elimination
model

We model a computer network as an open Jackson net-
work of interconnected service centers (queues) with incom-
ing/outgoing connections to the outside world (see, e.g., [1,
8]). Every node of the network is modeled as an M/M/1
queue with infinite size, i.e no blocking (packet rejection)
occurs when a new packet is decided to be sent to this node.
The service times of the queue follow the exponential dis-
tribution and the arrivals the Poisson distribution. At each
queue, it is assumed that the service time of a packet is in-
dependent from the service times at the other queues. It is
also assumed that the packet transmission time to a network
queue is the same for all queues and approximately, equal,
to the inverse of the transmission speed of the link leading to
the queue. This is generally true in all packet switched net-
works and it is also true if we assume that the packet length is
small and, thus, can be considered as constant. The service
times for a packet as it goes through the different network
queues towards the sink node are independent of each other
(Kleinrock’s Independence Assumption). Whenever a packet
is serviced at queue chooses the next node to visit with proba-
bility or exits the network with a certain probability (Markov
routing). The model also allows deterministic routing, where
the choice for the next not is predetermined. The network is
open to arrivals from the outside, at certain nodes of the net-
work. At each node there is incoming traffic modeled with a
Poisson distribution.
The model parameters are the following:

• N : the number of queues (network nodes) in the net-
work.

• λi: this is the parameter of the Poisson distribution used
to model the arrival of agents in the network (both an-
tivirus or virus agents are considered indistinguishable
when they arrive at the network and, thus, are consid-
ered to form a single Poisson arrival process with a sin-
gle parameter).

• µi: the parameter of the exponential distribution as-
sumed for the service time of the ith queue.

• ρi: the utilization of the ith queue, which is equal to λi

µi
.

• (ai, vi, di): number of antivirus and virus agents plus
the number of virus-antivirus encounters (annihilations)
at the ith queue, at the steady (equilibrium) system state.

• Pr[a]: probability that a queued task carries an antivirus
agent.

• Pr[v]: probability that a queued task carries a virus
agent.

• lij : the rate at which jobs leave queue i and enter queue
j.



202 Kammas, Komninos and Stamatiou

• qij : the probability that a job leaves queue i entering
queue j.

• We define the state vector as the vector consisting of N
triples, one for each node of the network, describing the
number of antivirus agents, the number of virus agents,
and the number of interactions that have occurred be-
tween members of the two populations:

n(t) = ((a1(t), v1(t), d1(t)), . . . , (aN (t), vN (t), dN (t)))

to be the system state at time t. More specifically, for a
network node i, the triple (ai(t), vi(t), di(t)) states that
at time t, node i contains ai(t) antivirus agents, vi(t)
virus agents and di(t) interactions have occurred be-
tween one antivirus agent and one virus agent. Note
that the sum ai(t) + vi(t) + 2di(t) is equal to the total
number of virus and antivirus agents that have passed
from node i.

• We define the probability density function for the possi-
ble state vectors as follows:

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t) =
Pr[n(t) = ((a1, v1, d1), (a2, v2, d2), . . . , (aN , vN , dN ))].

• We define the steady state distribution for the state vec-
tor n(t) as follows:

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN )) =
lim

t→∞
P ((a1, v1, d1), (a2, v2, d2), . . . , (aN , vN , dN ) : t).

III. Steady state distribution

Theorem 1 Given a computer network modeled as de-
scribed in Section II, the probability distribution function for
the state vector in the steady state is given by

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN )) =
N∏

i=1

(1− ρi)ρai+vi+2di
i . (1)

Proof The proof follows the general idea of the proof of Jack-
son’s theorem for one client population in open networks of
queues. We start by enumerating the possible events that may
occur in an infinitesimal time interval dt:

1. A job arrives in the network in some of the network’s
queues.

2. A job leaves a queue and exits the network.

3. A job leaves one queue and enters another queue within
the network.

4. A pair (antivirus-virus agents) annihilation occurs.

5. None of the above occurs.

The above, mutually exclusive events, are involved in the
computation of the probability of a change in the state vector
in the following way:

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t+dt) =
N∑

j=1

P((a1,v1,d1),...,(aj−1,vj ,dj),...,(aN ,vN ,dN ):t)l0jPr[a]dt +

N∑

j=1

P((a1,v1,d1),...,(aj ,vj−1,dj),...,(aN ,vN ,dN ):t)l0jPr[v]dt +

N∑

i=1

P((a1,v1,d1),...,(ai+1,vi,di),...,(aN ,vN ,dN ):t)µiqi0Pr[a]dt +

N∑

i=1

P((a1,v1,d1),...,(ai,vi+1,di),...,(aN ,vN ,dN ):t)µiqi0Pr[v]dt +

N∑

i=1

N∑

j=1

P((a1,v1,d1),...,(ai+1,vi,di),...,(aj−1,vj ,dj),...,(aN ,vN ,dN ):t)

·µiqijPr[a]dt +
N∑

i=1

N∑

j=1

P((a1,v1,d1),...,(ai,vi+1,di),...,(aj ,vj−1,dj),...,(aN ,vN ,dN ):t)

·µiqijPr[v]dt +
N∑

i=1

P((a1,v1,d1),...,(ai+1,vi+1,di−1),...,(aN ,vN ,dN ):t)

·µ2
i Pr[a]Pr[v]dt +

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t)

·(1− dt

N∑

j=1

(l0j + µj + µ2
jPr[a]Pr[v])). (2)

The first and second terms of Equation (2) account for the
probability of having an antivirus of virus agent arrive at
queues of the network. The third and fourth terms account
for the probability of having an antivirus of virus agent leave
the network from some of the networks’s queues. The fifth
and sixth terms correspond to the probability of having an-
tivirus or virus agent move from queue to queue within the
network. The seventh term is the probability of the event
where we have a virus-antivirus agent pair annihilation. Fi-
nally, the last term is the probability that no event, from the
previously stated events, occurs.
We can now move the term
P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t) to the left-hand
side of the equation, dividing both sides by dt, and taking
the limit as dt → 0. Then on the left-hand side we obtain the
derivative

d

dt
P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t)

while on the right-hand side the factor dt disappears due to
the division by dt. In the steady state there are no variations
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to the populations. Thus,

d

dt
P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN ):t) = 0.

We substitute the solution given in Equation (1) into the
steady state solution obtaining the following:

N∑

j=1

(l0j + µj + µ2
jPr[a]Pr[v]) =

N∑

j=1

l0jPr[a]
ρj

+
N∑

j=1

l0jPr[v]
ρj

+

N∑

i=1

µiqi0ρiPr[a] +
N∑

i=1

µiqi0ρiPr[v] +

N∑

i=1

N∑

j=1

ρi

ρj
µiqijPr[a] +

N∑

i=1

N∑

j=1

ρi

ρj
µiqijPr[v] +

N∑

i=1

µ2
i Pr[a]Pr[v]. (3)

We are interested only in the queues which contain a virus or
an antivirus agent. Thus Pr[a] + Pr[v] = 1. From the above
equation we obtain

N∑

j=1

(l0j + µj + µ2
jPr[a]Pr[v]) =

N∑

j=1

l0j

ρj
+

N∑

i=1

µiqi0ρi +

N∑

i=1

N∑

j=1

ρi

ρj
µiqij +

N∑

i=1

µ2
i Pr[a]Pr[v]. (4)

We will now study, separately, each of the four terms on the
right-hand side of Equation (4).
First term:
The first term in the right-hand side of Equation (4) can be
rewritten as follows, using the fact that ρi = λi

µi
(ρi is the

utilization of the ith queue):

N∑

j=1

l0j

ρj
=

N∑

j=1

l0jµj

λj
.

Second term:
N∑

i=1

µiqi0ρi =
N∑

i=1

λiqi0 =
N∑

i=1

λi(1−
N∑

j=1

qij) =

N∑

i=1

λi −
N∑

i=1

N∑

j=1

λiqij .

It holds that
N∑

i=1

N∑

j=1

λiqij =
N∑

i=1

λi −
N∑

i=1

li0 −
N∑

i=1

µ2
i Pr[a]Pr[v] (5)

and

λi =
N∑

j=0

lij + µ2
i Pr[a]Pr[v].

In the network we have

N∑

i=1

λi =
N∑

i=1

N∑

j=0

lij +
N∑

i=1

µ2
i Pr[a]Pr[v] ⇒

N∑

i=0

N∑

j=1

lij =
N∑

i=1

N∑

j=0

lij +
N∑

i=1

µ2
i Pr[a]Pr[v] ⇒

N∑

i=1

N∑

j=1

lij +
N∑

j=1

l0j =

N∑

i=1

N∑

j=1

lij +
N∑

i=1

li0 +
N∑

i=1

µ2
i Pr[a]Pr[v] ⇒

N∑

j=1

l0j =
N∑

i=1

li0 +
N∑

i=1

µ2
i Pr[a]Pr[v]. (6)

Using Equation (6), Equation (5) becomes

N∑

i=1

N∑

j=1

λiqij =
N∑

i=1

λi −
N∑

j=1

l0j .

Consequently, the second term on the right-hand side of
Equation (4) becomes

N∑

j=1

l0j .

Third term:
The third term can be rewritten as follows:

N∑

i=1

N∑

j=1

ρi

ρj
µiqij =

N∑

i=1

N∑

j=1

λiqij
µj

λj
=

N∑

j=1

µj

λj

N∑

i=1

λiqij =
N∑

j=1

µj

λj
(λj − l0j) =

N∑

j=1

µj −
N∑

j=1

µj l0j

lj
.

Fourth term:
The fourth term is not necessary to be further transformed.

Summing up all the four terms above, we obtain equality be-
tween the two sides. Thus, we conclude that the distribution
function that we have assumed in the statement of the The-
orem (given by Equation (1)) was the correct one, since it
satisfies the steady state Equation (3), completing the proof
of the theorem. ¤
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IV. Properties and assessment of the model

The proposed model assumes that antivirus and virus agents
enter a network as normal tasks that need the network’s re-
sources in order to propagate. Further, the only interaction
allowed by the model is a simple antivirus-virus pair anni-
hilation. This pair annihilation (i) destroys one virus agent
in order to obstruct virus propagation, and (ii) destroys one
antivirus agent in order to avoid overloading the network
with antivirus agents. Although more drastic elimination
rules could be stated for the model, this simple rule has two
advantages: (i) it is mathematically tractable, enabling the
exploitation of the techniques used to analyze general open
Jackson networks of queues, and (ii) it can be seen as a worst
case scenario, placing an upper bound to how severe a virus
propagation process can be in a network with given server
queue characteristics.
The proposed model, also, avoids the use of complex, non-
linear differential equation systems for the description of the
co-evolution of the two types of agents. The resulting proba-
bility distribution function for the network state is simple and
it is given in a product form that is easy to compute and op-
timize, given the network parameters. In addition, the model
takes implicitly into account the topology of the network as
well as the communication links characteristics in the pa-
rameters li,j , which are the rates with which jobs leave the
ith queue and arrive to the jth queue. These parameters can
be solved for given the rates with which the tasks enter the
network from the outside, after writing down the equations
that denote the preservation of task rates within the network
(see [1]). These equations are linear and can be solved easily,
giving the λis, i.e. the incoming task rates for each network
node. The solutions can, then, lead to the computation of
ρi = λi

µi
parameters required by Equation (1).

With regard to the elimination rule (i.e. one antivirus and
one virus annihilate) that we analyzed, it can be generalized
easily. For instance, we may assume that one antivirus agent
can annihilate s virus agents. Then it can be shown that the
probability density function, analogously to Equation (1), is
the following:

P((a1,v1,d1),(a2,v2,d2),...,(aN ,vN ,dN )) =
N∏

i=1

(1− ρi)ρ
ai+vi+(1+s)·di

i . (7)

Equation (7) links, directly, the probability function of the
network’s state with the “agility” of the antivirus agents (rep-
resented by the parameter s).

V. Modeling the co-evololution DNS worms and
anti-worms in IPv6 networks

In this section we present models for the dynamics of the
co-evolution of worm agents in the presence of anti-worm
agents that move in the network in order to locate and stop

worm propagation. The proposed models consider anti-
worm agents who know the network and, thus, know the IP
addresses that they should visit and anti-worm agents that do
not know the network and need to issue DNS queries in order
to discover valid IP addresses. We further enhance the model
with “honeypot” domain name servers that attempt to lure
worm agents to issue queries, introducing only a delay and
providing no answer. We show that by simply delaying the
response to DNS queries issued by the worm has very little
positive effect on the propagation rate of the worm. Queuing
theory was used for modelling some of the parameters which
present in our equations. This work has been accepted for
presentation in IAS-2009 conference.

Let us denote the set of all possible strings which can be pro-
duced by the string generator as χ. The subset of χ that are
actual host addresses is denoted by χtarget. An instance of
a DNS worm that uses the string generator to produce prob-
able host addresses and then tries to infect the valid address
is only able to infect hosts from the set of χtarget. Naturally,
there are still valid Internet host addresses that lie outside
χ and cannot be produced by the string generator, and as a
consequence cannot be infected. From the view of the DNS
worm, the vulnerable hosts on the internet are only the hosts
with addresses contained in string set of χtarget. For a string
produced by the string generator, the probability of it being a
valid hostname is

σ =
χtarget

χ

DNS servers provide a mapping from alphabetical domain
names to the numerical IP address used to identify hosts in
the internet. In a typical DNS query, a client needs to obtain
the IP address of a distant host that it needs to contact. It
first contacts the local resolver, a DNS server in the same do-
main as the client. This resolver then contacts one of the root
name-servers until it queries the authoritative name-server
for the hostname to be resolved. The authoritative name-
server then replies to the local resolver with the required IP
address. The local resolver then sends it to the client and
also caches a copy for immediate retrieval in case of further
queries for the same hostname from a client in the same do-
main with the resolver. The time taken for a DNS query con-
sists of round-trip delays between the local resolver and the
client dlocal and also the round-trip delays between the local
resolver and the name-servers queried dinternet. In mathe-
matical form,

d = dlocal + dinternet (8)

The delay dinternet may consist of round-trip times of com-
munication amongst multiple pair of hosts. These delays de-
pend on multitude of factors like Timeouts and Retransmis-
sions and DNS cache hit/miss. If a DNS query packet is lost,
typically the client waits for a timeout T before sending a
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retransmission. If Pr is the loss probability (so we have a
retransmission), then the expected DNS delay for a query is

dav = dlocal + dinternet +
prT

1− pr
(9)

Some queries solved by the local resolver without a need
from DNS servers when it has already the answer in the
cache. So the delay in this case is only dlocal. If pDCH is the
probability of a DNS cache hit when resolving a hostname,
then the average delay is

dcached
av = pDCHdlocal + (1− pDCH)dav (10)

Let τf the average infection time. Then the average delay
for a query which ends to infection is dcached

av + τf . So the
effective average DNS delay for a worm is

deff = σ(dcached
av + τf ) + (1− σ)(dav) (11)

and the effective scan rate of the worm is ξ = 1
deff

. To
study the behavior of the servers, we can model them as an
M/M/1/K queuing system. These systems have exponen-
tial service rate µ, K is the maximum number of queries in
each queue at a given time and λ is the arrival rate of queries.
The probability of a queue having i queries waiting to be
served is given by

π(i) =
(1− p)pi

1− pK+1

where p is the utilization of the queue, p = λ
µ . Some times,

when we have much traffic in the net, not all queries can be
served. Some of the queries will be dropped due to the buffer
exhaustion in the queuing system. The expected probability
of a query to be dropped is given by

E[loss] = π(K) =
(1− p)pK

1− pK+1

This probability is a good measure of the retransmission
probability of a DNS query, so we have pr = E[loss]. Now,
for the modeling of the delay dinternet we use the mean ex-
pected response time of only the accepted queries E[Xa].
And this happens when the queue is not full.

E[Xa] = E[X|accepted] =
E[X]

1 = E[loss]

=
1
µ

[
1

1− p
− KpK

1− pK
]

. For the parameter λ, we can say that is equal to the to-
tal number of hosts who make queries, in this case only the
infected hosts, times the scan rate. So p = aNξ

µ .
The worm agents try to clean infected or protect vulnera-
ble computers by learning their addresses (using DNS). We
assume that antiworm agents do not have the same success
rate with DNS worms since these worms try to spread fast,

in less time. They, thus, may have some very clever ways
of exploiting DNS servers or DNS information, not matched
by antiworm agents (the general assumption that antiworm
software is, generally, a little behind worms). To model this
assumption, we consider that the string generator used by
antiworm agents has a probability σ1 < σ to hit a valid ad-
dress. These queries from antiworm agents are answered by
the same DNS servers answering worm queries. Therefore,
the mean delay in the responses, are the same for worm and
antiworm queries, used the same DNS servers in order to be
replied, which are common for all queries, and from DNS
worms. So we expect the same mean time for response, be-
cause they have the same delays. We denote the mean delay
time by ξ.
Now we derive the dynamics of a and v. The rates and the
parameters of worm propagation are the same but the anni-
hilation rates are different due to the more complex mech-
anism of eliminating viruses: i) updated antivirus agents
on users’ computers, and ii) antivirus agents moving in the
network using DNS information. From this two-fold an-
nihilation mechanism, we have a total annihilation rate of
λuh + σ1ξ, which is the rate of propagation of antivirus
agents. Considering the dynamics during an infinitesimal
time period dt, we have the following: I(t + dt) − I(t) =
I(t)σξ(1 − v − a)dt − A(t)v(λuh + σ1ξ)dt ⇒ I ′(t) =
I(t)σξ(1− v − a)−A(t)v(λuh + σ1ξ). We have

v′ = vσξ(1− v − a)− av(λuh + σ1ξ) (12)

For the antivirus agents we obtain the following equation:

A(t+dt)−A(t) = A(t)(1−a)(λuh+σ1ξ)dt−fA(t)dt ⇒

A′(t) = A(t)(1− a)(λuh + σ1ξ)− fA(t).

a′ = a(1− a)(λuh + σ1ξ)− fa. (13)

The last model we present, attempts to exploit the intuitive
idea that we can hinder DNS virus propagation by introduc-
ing dummy, or “honeypot”, servers. These servers look like
normal DNS servers to the outside but they do not provide
answers to queries. They only introduce a delay, causing re-
transmission from the other side of the connection.
The dummy servers cannot be detected because they seem,
from the outside, to handle normal network traffic. In prac-
tice, the dummy servers increase the probability to have a re-
transmission and, thus, introduce artificial delays in the net.
This may have the effect of slowing down virus propagation.
A negative side effect is that legal DNS queries are delayed
too, something that can be tolerated for the sake of network
protection.
In order to include dummy servers in the model, we modify
the term pr in the equation of the delay dav , with a term
prd = pr +pd, where pd is the fraction of the dummy servers
that are placed in the target network.
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dav = dlocal + dinternet +
prdT

1− prd
(14)

The main difference between this equation and the equations
from the previous model, lies is the term of the scan rate ξ.
We, now, make the assumption that the DNS antivirus agents
know the real servers and the delays in their DNS queries are
not larger. The delays from the dummy servers have an effect
only on the response delays for the virus queries.
The differential equations are, now, the following:

v′ = vσξd(1− v − a)− av(λuh + σ1ξ) (15)

a′ = a(1− a)(λuh + σ1ξ)− fa (16)

where ξd is the scan rate of DNS worms, which incorporates
also the probability of hitting a dummy server.

VI. Numerical results and Discussion

In this section we will present some numerical results of
the solution of differential equations of our models. For
the numerical approximations we have used the fourth order
Runge-Kutta method. All the followings numerical results,
have been solved with the same parameter values and with
the same initial values for virus and antivirus agents. Ini-
tial values are: 0.03 for virus agents and 0.001 for antivirus
agents. See table for the values of the rest of the parameters.

Parameter Description Value
σ virus probability of successful scan 0.02
ξ scan rate 4000/sec

λuh growth coefficient 0.5
f decay of antivirus 0.001
σ1 antivirus probability of successful scan 0.0002
ξd scan rate in net with dummy servers 3000/sec

Table 1: Parameter Table

For all runs of the model, we used parameters that are based
on real observation data from DNS viruses (slammer). We
also assumed the DNS queries cover an address space of size
2128.
In Fig. 1 we show the results from the first model, where we
have DNS worms and antivirus that know the network ad-
dresses. We observe that the viruses have an abrupt increase
right from the start of the infection then, gradually, propa-
gate in the whole network. (The Slammer and Witty worms
amply demonstrated the effectiveness of this brute force tech-
nique in spreading at time scales that do not permit human
reaction and make automated reaction very difficult. After
some time, the antivirus agents start increasing (where the
increase depends on the rate of increase of the virus agents)
while, at the same time,the population of the virus agents
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decreases. The population of the antivirus agents increases
until the agents cover the whole victim network (covered by
the DNS servers). At this point, the virus agents are extinct
In Fig. 2 we see the results from the extended model, where
we have two types of antivirus agents: one type that knows
the network and one type that uses DNS to locate hosts, like
the DNS worm. Of course, the total size of the two types is
of interest since they jointly protect the network.We see that,
again, the increase of the virus population is abrupt at the be-
ginning. However, virus annihilation starts earlier than in the
model whose results are shown in Fig. 1. This is, partly, due
to the fact that we have two types of antivirus agents that pro-
tect the network, one controlled by users and the DNS type,
whose operation is automatic and does not depend on users’
actions. Another reason that lead to this improvement is that
the DNS antivirus agents introduce delays in the answers to
the queries issued by the DNS viruses, since they too need
responses to their DNS queries, imposing further workload
on the servers.
In Figs. 3 and 4 we compare the rates of increase in the
virus populations when we introduce “honeypot” (dummy)
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servers for luring DNS queries by DNS viruses. We see that
in both cases (figures) the virus agents cover the whole target
network while the annihilation from virus agents starts at,
nearly, the same time instance, because the dummy servers
do not affect the increase of the virus agents. However, in
fig.4 we observe a smoother increase rate in the population of
viruses (i.e. virus agents are obstructed from spreading fast).
This is due to the fact that dummy servers introduce delays
in the queries of DNS virus agents (since they simply intro-
duce a delay, returning no answer to the queries, thus intro-
ducing many retransmissions). Consequently, it seems that
honeypot servers do not significantly hinder virus propaga-
tion, contrary to intuition. They introduce, however, a small
“window” of slow increase rate, for administrators to act, by
observing that many retransmissions take place at dummy
servers. The overall conclusion is that honeypot servers are
not a significant countermeasure against DNS IPv6 viruses.

VII. Conclusions and directions for further re-
search

In this paper we have proposed two virus propagation mod-
els based on network characteristics. The first model treats
the computer network as an open network of M/M/1 queues
while the second one includes the operation of Domain Name
Servers and ways in which virus agents can take advantage
of them. A possible extension of the present work would
be to combine the two models into a one model as follows:
using elements of the first model, we find the state distribu-
tion function for the network state for a network with more
general arrival and service patterns (which we assumed to be
Poisson and exponentially distributed) and then provide the
solution as initial values to the differential equations, written
for each network node separately, of the DNS model in IPv6.
Another extension is to consider more complex antivirus-
virus interactions in order to study more efficient virus elim-
ination processes than the one considered in this paper. For
instance, one may consider elimination strategies whereby an
antivirus agents eliminates a virus agent with a certain prob-
ability and then produces, with another probability, a copy of
itself. Another possible elimination rule is for virus agents
to be able to produce copies of themselves while propagating
in the network, something which the proposed model is cur-
rently missing. All virus population is coming from the out-
side and no replication takes place within the network while
the virus agents propagate.
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